Up & Running with wxPython

Robin Dunn

O’Reilly Open Source Convention
July 26-30, 2004

Presentation overview

 Introduction to wxPython

» QGetting started

« Application fundamentals
* Widgets galore

* Event handling

* Organizing your layout

* Drawing

e Drag and drop
Debugging with PyCrust
Other tools

Introduction to wxPython

« wxPython is a GUI toolkit for Python, built upon the
wxWidgets C++ toolkit.
— Cross platform: Windows, Linux, Unix, OS X.

— Uses native widgets/controls, plus many platform independent
widgets.

« Mature, well established projects.
— wxWidgets: 1992
— wxPython: 1996

Introduction: architecture

wxPython Library

Proxy classes —»

wxWidgets Toolkit

Platform GUI

Operating System

Introduction: partial class hierarchy

wx.Object |« wx.EvtHandler |« wx.Window
A
wx.TopLevel Window wx.Panel
A A
wx.Frame wx.Dialog wx.ScrolledWindow u

wx.Control

A

Getting started with wxPython

 Installation 1s simple -- binary 1nstallers are available at
SourceForge and via http://wxPython.org/download.php
for:
— Windows: *.exe
— Linux: *.rpm (and *.deb’s are available separately.)
- OS Xt *.dmg, a disk image that contains an Installer package.

* (Can be built from source for other Unix-like systems.

Getting started with wxPython

 Choose an installer.

e Which version of Python do you use?
— 2.2,0r2.3

* Unicode?
— Windows, but be careful with Win9x/ME
— Linux/Unix, with the GTK2 build
— OS X, soon

 or ANSI?
— All platforms

Getting started with wxPython

* Choose an editor or development environment:
— Boa Constructor
— WingIDE
— PyAlaMode
— SCiTE

— Emacs, vi, etc.

« [t’s just plain text, so an ordinary editor and command line
will do.

Getting started with wxPython

« Ready, set, go!

« The wxPython Demo 1s a great way to learn about the
capabilities of the toolkit.

>

. Fun theé%
~ P ython;
' . DEMO

Getting started with wxPython

wiPython: [A Demonstration]

|- Cor

=+ Recent Additions
i S crolledPanel
- Shapedwindow
-MewMamespace
- Popuphdenu
-AnaloaClockMfindow
- MaskedEditContrals
T reeListChl
(o rid_MegaE xample
t- Baze Frames and Dialogs
t]- Commaon Dialogs
t- More Dialogs
& Windows/Controlz
- Popuphenu
- B utton
- wCheckBox
-l heckListBox
- wChoice
- wCornboB o
- A auge
- wnl enencDirChl
- wnlGrid
-~ lAnd_MegaExample
- weLiztB oy
- weLiztChil
L igtChl sirtual
s =]
- M obebiook

Python

Python is an interpreted, interactive, object-oriented programming language often compared to
Tcl, Perl, Scheme, ar Java.

Python combines remarkable power with wery clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are interfaces to
many system calls and libraries, and new built-in modules are easily written in C or C++
Fython is also usable as an extension language for applications that need a programmable
interface,

wxWindows

wiWindows is a free C++ framework designed to make cross-platform programming child's
play. Well, almost. wiWindows 2 supports Windows 3.1/85/88/MT, Unix with GTk/MotiflLesstif,
with a Mac version underway. Other ports are under consideration.

wi\Windows is a set of libraries that allows C++ applications to compile and run on several
different types of computers, with minimal source code changes. There is one library per
supported GUI (such as Matif, or Windows). As well as providing a common AP (Application
Programming Interface) for GUI functionality, it provides functionality for accessing some
commaonly- systern facilities, such as cop Ly

OnltemEspanded: Core Windows/Controlz
Running dema wxGnid_MegaE sample.py...
Running demao MazkedE ditCantrals.py..

-y Popupiaindow
- wnF adioB o
- wxF adioB utton

Getting started with wxPython

1= wxPython: (A Demaonstration)

File Demo Help

= SIEIT M T wirPythan Overview] Demo Code
[=--Recent additions 7t
wscrolledPanel L8
ShapedWindow
MewsMamespace Python
F M : ; ; ; : 1 ;
H?]F;:JDP CT;;JKWMDW Python is an interpreted, interactive, ohject-oriented programming language often
g ; compared to Tel, Perl, Scheme, or Java. =
tdaskedEditContrals =
wiTreelistCtrl Python combines remarkable power with very clear syntax It has modules, classes,
wxGrid_MegaBx=amp Il exceptions, very high level dynamic data types, and dynamic typing. There are
% Base Frames and Dialolff interfaces to many system calls and libraries, and new built-in modules are easily written
- Common Dialogs in C or C++. Python is also usable as an extension language for applications that need
& Mare Dialogs a programmable interface.
Core Windows/Controls i
= more windowsrcontoi | WXWINdows
FH-Window Layout
[#-Process and Events wxiVindows is a free C++ framework designed to make cross-platform programming
Clipboard and DnD child's play. ¥Well, aimost. wxWindows Z supports Windows 3.1/95/85/MT, Unix with
& Using Images GTE/Motitflesstif, with a hac version underway, Other ports are under consideration.
E'_;: g:}s,cellane_uus i wetWindows is a set of libraries that allows C++ applications to compile and run on
[1-Onjects using an exIemill <oy ara) different types of computers, with minimal source code changes. There is one
Check outthe samples | |ibrary per supported GUI (such as Motif, or Windows). A3 well as providing a common
&P (Application Programming Interface) far GUI functionality, it provides functionality for
accessing some commonk~-used operating system facilities, such as copying or
N | deleting files. wx\Windows is a 'framework’ in the sense that it provides a lof of built-in +
hwindow handle: BOG17489
f [5l

-

Getting started with wxPython

8080

wxPython: (A Demonstration)

v

YyYYyYYyyYyYYYYYYY

v wxPython Overview

Recent Additions
wxScrolledPanel
ShapedWindow
NewMamespace
PopupMenu
AnalogClockWindow
MaskedEditContrals
wxTreelistCrrl
wixGrid_MegaExample

Base Frames and Dialog:

Common Dialogs |

More Dialogs

Care Windows/Controls

More Windows [Controls

Window Layout

Process and Events

Clipbpard and DnD

Using Images

Miscellaneaus

Objects using an extarn:

Check out the samples ¢

[wxPython Gverview. | Demo Code |

Python

Python is an interpreted, interactive, object-oriented programming language
often compared to Tcl, Perl, Scheme, or Java.

Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, and new built-in
modules are easily written in C or C++. Python is also usable as an extension
language for applications that need a programmable interface.

wxWindows

wxWindows is a free C++ framework designed to make cross-platform
programming child's play. Well, almost. wxWindows 2 supports Windows
3.1/95/98/NT, Unix with GTK/Motif/Lesstif, with a Mac version underway.
Other ports are under consideration.

wxWindows is a set of libraries that allows C++ applications to compile and run
_on several different types of computers, with minimal source code changes.

3

i

window handle: 0

Demo time...

Application fundamentals

import wx
class App (wx.App) :

def OnInit (self):
title = 'Bare Frame'

frame = wx.Frame (parent=None, id=-1, title=title)
frame.Show ()

return True

app = App ()
app -MainLoop ()

Application fundamentals

import wx

class Frame (wx.Frame) :
pass

class App (wx.App):
def OnInit (self):
title = 'Spare'
self.frame = Frame (parent=None, id=-1, title=title)
self. frame.Show()

self.SetTopWindow (self. frame)
return True

if __nhame == '__main__':
app = App()
app.MainLoop ()

Application fundamentals

import wx

class Frame (wx.Frame) :
def init_ (self, parent=None, id=-1, title='Title',
pos=wx.DefaultPosition, size=(400, 200)):
wx.Frame. init (self, parent, id, title, pos, size)

class App (wx.App) :
def OnInit (self):
self.frame = Frame ()
self. frame.Show()

self.SetTopWindow (self. frame)
return True

def main() :

app = App ()
app.MainLoop ()

if __hame == ' main ':
main ()

Application fundamentals

"""app.py has a basic application class."""
import wx
from frame import Frame

class App (wx.App):
def OnInit (self):
self.frame = Frame(title='This is my App')
self. frame.Show()
self.SetTopWindow (self. frame)
return True

def main():

app = App()
app .-MainLoop ()

if name == ' main ':
P main ()

Code break...

Widgets galore: top level windows

wx.Frame
— A container for other windows.
— Can automatically manage a MenuBar, ToolBar, and a StatusBar.

wx.Dialog
— For Modal or Modeless dialog boxes.

wx.MiiFrame

— Good for floating tool pallets, etc.
wx.MDIParentFrame, wx.MDIChildFrame

.. — [Take a wild guess :-]

Widgets galore: common dialogs

» All standard Windows common dialogs:
— Color, Directory, File,
— Font, PageSetup, Print,
— Message, Progress,
— FindReplace, etc.

» For other platforms either native dialogs are used, or
suitable recreations in wxWidgets are provided.

Widgets galore: common dialogs

Choosze a file |

Laok in: IQ Development [E:) j | |=j€| I |
1 Zope.ald L M5Dey [JRKTaals [d=b
1 bin [MNextGen T termp
1 cugnus [Mow [Taols
1 harne L Prajects [VendarDrop
1 htmi dPyLib [WisCafe setcp bat
1 JavaPlayground] Recycler 0 WMware E;:I Stuff g N Choooe aTie
| | EE AT
File names: | | Open a’}inmeﬁwhk}pmjec{m:%wﬁhﬂn?dm
Files of tupe; |Files [%.7] ll Faprel] Wl 53 - [analogClockWindow.py [y ErorDialogs.py 4 Gr
: B CVsS [ColarPanel.py [Eventhanager.py [y G
™ Open as read-anly. 2] hitmaps [ColourDE.py [y FancyText.py [y Gr
[bmp_source [Colourselect py [y FileBrowseButton.py [Gt
] data [ContextHelp.py [FontEnumeratar.py [Gi
[C7 ditwidget [CustomDragAndDrop.py [GenericButtans.py g Im|
[y aboutpy [DialagUnits. py [y GridCustEditar.py Oy La
S [y Activex\Wrapper_Acrobatpy [DragéndDrop.py [y GridCustTahle.py [y L=
[y ActiverxWrapper_|E.py [Drawe = HList py [y GridCragandDrop.py [Ty kI
(A== |

I

LF'ythun sOurce [y

il

ok |

|| Show hidden files Cancel |

Widgets galore: basic windows

e wx.Window

— General purpose window.

« wx.Panel
— Can do tab-traversal of controls.
— Uses standard system color for the background.

e wx.ScrolledWindow

— Manages its own scrollbars and scrolling of client area.

— Transforms coordinates based on scrollbar positions.

Widgets galore

« wx.SplitterWindow
— Can be split vertically or horizontally.

— Draggable sash for redistributing the space between sub-windows.

Widgets galore

e wx.grid.Grid

— Table or spreadsheet-like capabilities.

— Editors, Renderers, Tables (the data provider) can all be customized
and “plugged in”.

Widgets galore

i Simple Grid Demo

Limited text

Another cell |

Thiz cell iz read-only |

Y'ou can veta editing this cell

Thiz cell iz zet to zpan 3 raws and 3 columns

Thiz default cell will overflow into peighboring cells, but not i vou turn overflow off,

Widgets galore

e wx.StatusBar

|ﬁ Custor StatusBar... |I' togale clock 27-5ep-1999 122319

e wx.ToolBar

=] B3

i Test ToolBar
D] ®lgy TIT

i Test ToolBar

=] B3

Z N\ D@ =@t

Widgets galore

* wx.Notebook
— Manages multiple windows with tabs.
— Tabs can be on any side of the notebook that the platform supports.

[wixNotebook Overview [Demao Code I—B&lﬂn—l

Widgets galore

e wx.html.HtmlWindow

— Capable of parsing and rendering most simple HTML tags.
— Custom Tag Handlers can change or add to how HTML is rendered.

<wxp class="wxButton">
<param name='"label" value="Okay'">
<param name="id" value="wxID OK">
</wxp>

Widgets galore

e wx.html.HtmlWindow

About the wxPython demo

Widgets galore: controls

« wx.Button, wx.BitmapButton
 wx.RadioBox, wx.RadioButton
* wx.CheckBox

 wx.Choice @

e wx.ComboBox

wirF adioBox
. [T Apples: " zemo i!"'_ ane {hwio
e {5 " seven {eight

default value

Widgets galore: controls

 wx.ToggleButton
« wx.gizmos.EditableListBox | IR
* wx.lib.masked.TextCtrl 5 e

1112 13 14 15 16

18 18 20 2 22 23

e wx.calendar.CalendarCtrl % 2 27 B B W

e wx.lib.masked.TimeCtrl

Thiz iz a rifty ListB ow widget
that iz editable by the uzer.

|lze the buttorz abowve to
manipulate temsz in the list
1 to add new ones.

Widgets galore: controls

e wx.TextCtrl

— Password masking, multi-line S
. . Test it out and zee |
with or without word-wrap,

simple attributes, etc. ar—

Here iz a looooooooooooooong line of -]
text zet in the control.

The quick brown fow jumped over the
lazy dog...

If zupported by the native contral, thiz £

{iz red, and thiz iz a different font.

Widgets galore: controls

e wx.ListBox
 wx.CheckListBox

« wx.Gauge

—wrEauge and weSlider

/NN

[B3 0 ——p)—— 200

e wx.Slider

e wx.StaticBox

Selectone: [Zarg o Select many:

ane
b
N fawr

five
i

FEVER]
rinkit b

Widgets galore: controls

e wx.ListCtrl

— Supports list, icon, small icon, report views.
— Virtual mode, where data items are provided by overloaded methods.

@ Bad English The Price Of Love

@ DA Featuring Suzanne Yega Ton's Diner Rock
@ George Michael Fraying For Time Rock
@ Gloria E stefan Here'We dre Fock
@ Linda Fonstadt Don't Enow Much Rock
(32) Paul Yaung Oh Gl Rock
@ Faula &bdul Oppozites Attract Rock
@ Richard barx Should've Known Better Rock
@ Rod Stewart ForewerYoung Rock
~ N @ Roxette Dangerouz Rock
@ Sheena Eazton The Lover lnMe Rock
@ Sinead 0'Conrnor Mathing Compares 2 11 Rock
@ Stevie B. Because | Love You Rock
@ Taylar Dayre Lowve Wil Lead You Back Rock

@ The Bangles Eternal Flame Rock EI

Widgets galore: controls

o wx.TreeCtrl
— Supports images for various node states.

— Can be virtualized by delaying the adding
of child items until the parent is
expanded.

= The Roat ltem
-] Item O

-] Item 1

B Item 2

B2 Item 3

-] item 3-a
-] item 3b
- item 3¢

- item 3-c-0
- item 3-c-2
- item 3-c-3
- item 3-c-4
-3 itern 3-d
-3 item 3
+-[Itemn 4

-] Itemn &

+-[_] Itemn &

+1-7] Item &
+1-27] Itern 9

[
[
[
B Itemn 7
[
[
£

-7 Itern 10

Widgets galore: controls

o wx.gizmos.TreeListCtrl

| =] =5 The Root ltem col 1 root ool 2 root
Catem o tem Dic1) ltern Ofc2)
[ttem 1 ttem 1(c1) ltern 1(c2)
[tem 2 tem 2(c1) ltem 2ic2)
[tem 3 ltem 3(c1) ltemn 3ic2)
=1 temn 4 ftem 4(c1) ltern 4ic2)
[item 4-a itetn 4-a(c1) itarn 4-a(c2)
=1 2 item 4-b itetmn 4-bic1) itetn 4-bic2)
_ itern 4-b-0 tem 4-b-0(c1) item 4-b-0(c2)
— @ item 4-b-1 ftemd-b-1{ct) item 4-b-1(c2)
[l itern 4-h-2 tem 4-b-2(c1) item 4-b-2(c2)
itern 4-b-3 tem 4-b-3(c1) item 4-b-3(c2)
itern 4-b-4 tem 4-b-4(c1) item 4-b-4{c2)
[item 4-c itetmn 4-cicl) itatn 4-c(c2)
[item 4-d itetn 4-d(c1) itatn 4-dic2)
[item 4-g itetmn 4-e(c1) itatn d-e(c2)
[atem s ltem S¢c1) It Sic2)
[ltem & [tem Blc1) [tem B(CZ)

Widgets galore

» wx.stc.StyledTextCtrl

— (wx port of Scintilla)
& #l/bindeny python
B #
7 A Mame: Mair.py
8 # Purpose: Testing lots of stuff, contrals, window types, etc.
g9 #
10 # Author: Rabin Dunn
1 #
12 # Created: A lang time ago, in a galaxy far, far away..
G RCS-1D: $Ic Mainpy,v 1.76.2.29 2003/05/23 16:47:40 RD Exp §
44 # Copyrightt (o) 1999 by Total Control Software
45 # Licence: wiWindows license
16 #
17
18 import sys, 0s, time
- N 18 from wPythonows import *
20 from wxPython.html import wiHtmivyindow
21
22 import images

&

o

Event Handling

* Most, if not all, GUI systems and toolkits are designed to
be event driven, meaning that the main flow of your
program 1s not sequential from beginning to end.

* When something happens that is of interest to you (an
event), the system or toolkit calls a bit of your code that
deals with that event (event handler).

* When your event handler finishes, control returns to the
“main loop” and your program waits for the next event.

Event handling

Event
,.-' Handler

User Triggered
Event

wxPython
MainLoop

= I ’ Event
~ Handler

~ Al Event

Handler

Event Handling

* Various event-handling models:

« Callbacks: Standalone functions associated with an event by
calling a toolkit function. There are encapsulation problems.

* Message based: Messages sent to windows for controlling
behaviour, or for events.

* Virtual methods: One for each type of event. Solves
encapsulation, but leads to clutter, inflexible classes, and many
derived classes just to handle an event differently.

o Static event tables: Events are associated with classes and
Foly methods at compile time via a table. When the event occurs the
tables are searched for a match and the method is invoked.

Event Handling

« wxPython uses Dynamic Event Tables
— Built at run-time.

— Events can be “bound” to any callable object that will serve as the
Event Handler:
 any method of the class receiving the event, or other classes
* standalone functions
* any objectwitha call method

— Handlers are connected to events with a set of binder objects:
- wx.EVT MENU
« wx.EVT PAINT
« wx.EVT SIZE
* eftc.

Event Handling

« Each handler 1s passed an event object when called.

* Two classifications of event objects:

— Classes derived from wx.Event

* Events that only make sense for the window where the event took place,
such as wx.PaintEvent, wx.KeyEvent, wx.SizeEvent, etc.

— C(Classes derived from wx.CommandEvent

« Events that may be of interest for any object up the “containment
hierarchy,” such as wx.MenuEvent, wx.NotebookEvent, wx.ListEvent,
etc.

Event handling

ProcessEvent ProcessEvent

Event

Application
triggered

object

Enabled?

Has
matching

Is this the
App? No

Container
Yes

Yes

In search of Event Handlers...

self.Bind(wx.EVT_BUTTON,
self.Click,
self .button)

MyFrame H def Click(self, th)Z
print “click”

T

wx.Notebook

T

MyPanel

[

<ButtonClick> =——)! w~ Button

In search of Event Handlers...

self .Bind (wx. EVT_BUTTON,
self.Click,
self .button)

MyFrame |—>dfc1'k 1f t) :
wx .EVT LEFT DOWN, ‘ P

self .MouseDown)

wx.Notebook

T

MyPanel

% [

wx.Button
<ButtonClick> ___———-_—-. - def MouseDown (self, evt):

print “got it first!”
evt.Skip()

Code break...

Organizing your layout

» There are various ways to do layout:

— Brute force
» All widgets are positioned and sized pixel by pixel.
* Has to be redone in every EVT SIZE event.
* Painful, cross-platform issues.
— Layout Constraints
* Powerful, but complex and verbose.
» Deals with the relationships between widgets.
» See the docs and demo for more details.

— Sizers

* Not as flexible or complex, but powerful enough.
* Worth the pain.

Organizing your layout

Sizers

Similar to LayoutManagers in Java.

Not as flexible as LayoutContraints, but much simpler, once you get
over the hump.

Relationships defined by containment within sizers or nested sizers.

All items (windows or nested sizers) added to a Sizer are laid out by
a specific algorithm determined by the class of sizer.

An item’s position within its allotted space is also controllable.

wx.BoxSizer

box

wx .BoxSizer (wx.VERTICAL)

box.Add (wx.Button(win, 1010,

box2
box2
box2
box2
box2

box3
box3
N box3
box3
box3

box2

= wx.BoxSizer (wx.HORIZONTAL)
.Add (wx.
.Add (wx.
.Add (wx.
.Add (wx.

= wx.BoxSizer (wx.VERTICAL)
.Add (wx.
.Add (wx.
.Add (wx.
.Add (wx.

Button (win,
Button (win,
Button (win,
Button (win,

Button (win,
Button (win,
Button (win,
Button (win,

1010,
1010,
1010,
1010,

1010,
1010,
1010,
1010,

.Add (box3, 1, wx.EXPAND)
box.Add (box2, 1, wx.EXPAND)
box.Add (wx.Button(win, 1010,

; Boxes nzide of hnxes

Fesize thiz frame to see bow the sizers respghid. .

" one w) ,

"two") ,

"three") ,

nfouru)
"five")

"six") ,

14

’

"seven"),
"eight"),

"nine")

"ten") .

14

0,

0, wx.EXPAND)

WX
WX

~

o O oo

~

WX

~

R R DNO

~

wx . EXPAND)

.EXPAND)
.EXPAND)

WX.
WX.

WX.

EXPAND)
EXPAND)
.EXPAND)

EXPAND)

I i
wXx.GridSizer Pl £3

i Simple Gri N [=] E3
. one I two three
..................................... T
four five six
SEVEN eight nine
|Flesize this frame to see how the sizers respond. 2

Resize thiz frame to see how the sizers respond. .

RowColSizer

i RunDemo: BowColSizer

[4.2] zpari[2.2]

|

Drawing

A wx.DC 1s a device context onto which graphics and text
can be drawn.

e Represents a number of output devices 1n a generic way:
— windows
— printers
— bitmaps

— the whole screen

* The same code may be used to draw on different devices.

Drawing

 DC’s have many drawing primitives:

— DrawArc, DrawBitmap, DrawElipse, DrawLine, DrawLines,
DrawPoint, DrawPolygon, DrawRectangle, DrawRoundedRectangle,
DrawSpline, DrawText

* And work with GDI objects:

— wx.Font, wx.Bitmap, wx.Brush, wx.Pen, wx.Mask, wx.Icon, etc.

Code break...

Debugging with PyCrust

 Interactive Python Shell
* 100% Python
e Part of wxPython

« Standalone App

 Embeddable
Components

PyCrust

1 PyCrust 0.9.4 - The Flakiest Python Shell
2 Sponsored by Orbtech - Your source for Python programming expertise.
3 Python 2.3 (#2, Aug 31 2003, 17:27:29)
4 [GCC 3.3.1 (Mandrake Linux 9.2 3.3.1-1mdk)] on Llinux2
5 Type "help", "copyright", "credits" or "license' for more information.
& === import wx
7>>> f = wx.Frame(None, -1, "Hello World")
8>>> p = wx.Panel(f)
= wx.Button(p, -1, "Click me", {(10,10))
f.Showl
i Showtbool show=True) -» bool

o

| Bhows or hides the window, You may need to call Raise for a top level
window if you want to bring it to top, although this is not needed if
iBhow 1= called immedistely sfter the frame crestion, Returns True i
the window has been shown or hidden or False if nothing was done
{because it already waz in the requested =state,

[k, CallAfter

BusyInfoPtr

Buton deType: <type 'function's=

Button_GetDefaults

ButtonMNamestr ‘Value: =function CallAfter at 0x413bc48c>
-~ ButtonPtr

‘Docstring:

CalculateLayoutEve

CalculateLayoutEve

—

—CANCEL

" "“call the specified function after the current and pending event
‘handlers have been completed. This is also good for making GUI
- method calls from nen-GUI threads."""

PyCrust Embeddable Components

&

» Interactive Shell:
py.shell

 Namespace Viewer:
py.filling

e Integrated Combo:
py.crust

PyCrust Features

e Colorized Python Code

« Attribute/Method Auto-Completion
* Function/Method Calltips

e Multiline Command Editing

 Command History/Recall

PyCrust demo...

Other tools

e wxDesigner

* Boa Constructor
« wxGlade
 WingIDE

e PythonCard

e Chandler

Questions?

Last minute additions

« Slides of this presentation are available at:
http://wxPython.org/OSCON2004/basic/

