
1wxPython: Cross Platform GUI Toolkit

Up & Running with wxPython

Robin Dunn

 O’Reilly Open Source Convention

July 26–30, 2004

2wxPython: Cross Platform GUI Toolkit

Presentation overview

• Introduction to wxPython
• Getting started
• Application fundamentals
• Widgets galore
• Event handling
• Organizing your layout
• Drawing
• Drag and drop
• Debugging with PyCrust
• Other tools

3wxPython: Cross Platform GUI Toolkit

Introduction to wxPython

• wxPython is a GUI toolkit for Python, built upon the
wxWidgets C++ toolkit.
– Cross platform: Windows, Linux, Unix, OS X.

– Uses native widgets/controls, plus many platform independent
widgets.

• Mature, well established projects.
– wxWidgets: 1992

– wxPython: 1996

4wxPython: Cross Platform GUI Toolkit

Introduction: architecture

Operating System

Platform GUI

wxPython Extension Modules

wxWidgets Toolkit

Proxy classes
wxPython Library

5wxPython: Cross Platform GUI Toolkit

Introduction: partial class hierarchy

wx.Object wx.EvtHandler wx.Window

wx.Frame

wx.Panel

wx.ScrolledWindowwx.Dialog

wx.TopLevelWindow wx.Control

6wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

• Installation is simple -- binary installers are available at
SourceForge and via http://wxPython.org/download.php
for:
– Windows: *.exe

– Linux: *.rpm (and *.deb’s are available separately.)

– OS X: *.dmg, a disk image that contains an Installer package.

• Can be built from source for other Unix-like systems.

7wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

• Choose an installer.

• Which version of Python do you use?
– 2.2, or 2.3

• Unicode?
– Windows, but be careful with Win9x/ME

– Linux/Unix, with the GTK2 build

– OS X, soon

• or ANSI?
– All platforms

8wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

• Choose an editor or development environment:
– Boa Constructor

– WingIDE

– PyAlaMode

– SCiTE

– Emacs, vi, etc.

• It’s just plain text, so an ordinary editor and command line
will do.

9wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

• Ready, set, go!

• The wxPython Demo is a great way to learn about the
capabilities of the toolkit.

10wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

11wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

12wxPython: Cross Platform GUI Toolkit

Getting started with wxPython

13wxPython: Cross Platform GUI Toolkit

Demo time...

14wxPython: Cross Platform GUI Toolkit

Application fundamentals

import wx

class App(wx.App):

 def OnInit(self):
 title = 'Bare Frame'
 frame = wx.Frame(parent=None, id=-1, title=title)
 frame.Show()
 return True

app = App()
app.MainLoop()

15wxPython: Cross Platform GUI Toolkit

Application fundamentals

import wx

class Frame(wx.Frame):
 pass

class App(wx.App):
 def OnInit(self):
 title = 'Spare'
 self.frame = Frame(parent=None, id=-1, title=title)
 self.frame.Show()
 self.SetTopWindow(self.frame)
 return True

if __name__ == '__main__':
 app = App()
 app.MainLoop()

16wxPython: Cross Platform GUI Toolkit

Application fundamentals

import wx

class Frame(wx.Frame):
 def __init__(self, parent=None, id=-1, title='Title',
 pos=wx.DefaultPosition, size=(400, 200)):
 wx.Frame.__init__(self, parent, id, title, pos, size)

class App(wx.App):
 def OnInit(self):
 self.frame = Frame()
 self.frame.Show()
 self.SetTopWindow(self.frame)
 return True

def main():
 app = App()
 app.MainLoop()

if __name__ == '__main__':
 main()

17wxPython: Cross Platform GUI Toolkit

Application fundamentals

"""app.py has a basic application class."""

import wx

from frame import Frame

class App(wx.App):
 def OnInit(self):
 self.frame = Frame(title='This is my App')
 self.frame.Show()
 self.SetTopWindow(self.frame)
 return True

def main():
 app = App()
 app.MainLoop()

if __name__ == '__main__':
 main()

18wxPython: Cross Platform GUI Toolkit

Code break...

19wxPython: Cross Platform GUI Toolkit

Widgets galore: top level windows

• wx.Frame
– A container for other windows.

– Can automatically manage a MenuBar, ToolBar, and a StatusBar.

• wx.Dialog
– For Modal or Modeless dialog boxes.

• wx.MiniFrame
– Good for floating tool pallets, etc.

• wx.MDIParentFrame, wx.MDIChildFrame
– [Take a wild guess :-]

20wxPython: Cross Platform GUI Toolkit

Widgets galore: common dialogs

• All standard Windows common dialogs:
– Color, Directory, File,

– Font, PageSetup, Print,

– Message, Progress,

– FindReplace, etc.

• For other platforms either native dialogs are used, or
suitable recreations in wxWidgets are provided.

21wxPython: Cross Platform GUI Toolkit

Widgets galore: common dialogs

22wxPython: Cross Platform GUI Toolkit

Widgets galore: basic windows

• wx.Window
– General purpose window.

• wx.Panel
– Can do tab-traversal of controls.

– Uses standard system color for the background.

• wx.ScrolledWindow
– Manages its own scrollbars and scrolling of client area.

– Transforms coordinates based on scrollbar positions.

23wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.SplitterWindow
– Can be split vertically or horizontally.

– Draggable sash for redistributing the space between sub-windows.

24wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.grid.Grid
– Table or spreadsheet-like capabilities.

– Editors, Renderers, Tables (the data provider) can all be customized
and “plugged in”.

25wxPython: Cross Platform GUI Toolkit

Widgets galore

26wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.StatusBar

• wx.ToolBar

27wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.Notebook
– Manages multiple windows with tabs.

– Tabs can be on any side of the notebook that the platform supports.

28wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.html.HtmlWindow
– Capable of parsing and rendering most simple HTML tags.

– Custom Tag Handlers can change or add to how HTML is rendered.

<wxp class="wxButton">
 <param name="label" value="Okay">
 <param name="id" value="wxID_OK">
</wxp>

29wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.html.HtmlWindow

30wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.Button, wx.BitmapButton

• wx.RadioBox, wx.RadioButton

• wx.CheckBox

• wx.Choice

• wx.ComboBox

• wx.SpinButton

31wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.ToggleButton

• wx.gizmos.EditableListBox

• wx.lib.masked.TextCtrl

• wx.calendar.CalendarCtrl

• wx.lib.masked.TimeCtrl

32wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.TextCtrl
– Password masking, multi-line

with or without word-wrap,
simple attributes, etc.

33wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.ListBox

• wx.CheckListBox

• wx.Gauge

• wx.Slider

• wx.StaticBox

34wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.ListCtrl
– Supports list, icon, small icon, report views.

– Virtual mode, where data items are provided by overloaded methods.

35wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.TreeCtrl
– Supports images for various node states.

– Can be virtualized by delaying the adding
of child items until the parent is
expanded.

36wxPython: Cross Platform GUI Toolkit

Widgets galore: controls

• wx.gizmos.TreeListCtrl

37wxPython: Cross Platform GUI Toolkit

Widgets galore

• wx.stc.StyledTextCtrl
– (wx port of Scintilla)

38wxPython: Cross Platform GUI Toolkit

Event Handling

• Most, if not all, GUI systems and toolkits are designed to
be event driven, meaning that the main flow of your
program is not sequential from beginning to end.

• When something happens that is of interest to you (an
event), the system or toolkit calls a bit of your code that
deals with that event (event handler).

• When your event handler finishes, control returns to the
“main loop” and your program waits for the next event.

39wxPython: Cross Platform GUI Toolkit

Event handling

40wxPython: Cross Platform GUI Toolkit

Event Handling

• Various event-handling models:

• Callbacks: Standalone functions associated with an event by
calling a toolkit function. There are encapsulation problems.

• Message based: Messages sent to windows for controlling
behaviour, or for events.

• Virtual methods: One for each type of event. Solves
encapsulation, but leads to clutter, inflexible classes, and many
derived classes just to handle an event differently.

• Static event tables: Events are associated with classes and
methods at compile time via a table. When the event occurs the
tables are searched for a match and the method is invoked.

41wxPython: Cross Platform GUI Toolkit

Event Handling

• wxPython uses Dynamic Event Tables
– Built at run-time.

– Events can be “bound” to any callable object that will serve as the
Event Handler:

• any method of the class receiving the event, or other classes

• standalone functions

• any object with a __call__ method

– Handlers are connected to events with a set of binder objects:
• wx.EVT_MENU

• wx.EVT_PAINT

• wx.EVT_SIZE

• etc.

42wxPython: Cross Platform GUI Toolkit

Event Handling

• Each handler is passed an event object when called.

• Two classifications of event objects:
– Classes derived from wx.Event

• Events that only make sense for the window where the event took place,
such as wx.PaintEvent, wx.KeyEvent, wx.SizeEvent, etc.

– Classes derived from wx.CommandEvent
• Events that may be of interest for any object up the “containment

hierarchy,” such as wx.MenuEvent, wx.NotebookEvent, wx.ListEvent,
etc.

43wxPython: Cross Platform GUI Toolkit

Event handling

44wxPython: Cross Platform GUI Toolkit

In search of Event Handlers…

MyFrame

wx.Notebook

MyPanel

wx.Button

self.Bind(wx.EVT_BUTTON,
 self.Click,
 self.button)

def Click(self, evt):
 print “click”

<ButtonClick>

45wxPython: Cross Platform GUI Toolkit

In search of Event Handlers…

MyFrame

wx.Notebook

MyPanel

wx.Button
<ButtonClick>

def Click(self, evt):
 print “click”self.button.Bind(

 wx.EVT_LEFT_DOWN,
 self.MouseDown)

def MouseDown(self, evt):
 print “got it first!”

 evt.Skip()

self.Bind(wx.EVT_BUTTON,
 self.Click,
 self.button)

46wxPython: Cross Platform GUI Toolkit

Code break...

47wxPython: Cross Platform GUI Toolkit

Organizing your layout

• There are various ways to do layout:
– Brute force

• All widgets are positioned and sized pixel by pixel.

• Has to be redone in every EVT_SIZE event.

• Painful, cross-platform issues.

– Layout Constraints
• Powerful, but complex and verbose.

• Deals with the relationships between widgets.

• See the docs and demo for more details.

– Sizers
• Not as flexible or complex, but powerful enough.

• Worth the pain.

48wxPython: Cross Platform GUI Toolkit

Organizing your layout

• Sizers
– Similar to LayoutManagers in Java.

– Not as flexible as LayoutContraints, but much simpler, once you get
over the hump.

– Relationships defined by containment within sizers or nested sizers.

– All items (windows or nested sizers) added to a Sizer are laid out by
a specific algorithm determined by the class of sizer.

– An item’s position within its allotted space is also controllable.

49wxPython: Cross Platform GUI Toolkit

wx.BoxSizer

box = wx.BoxSizer(wx.VERTICAL)
box.Add(wx.Button(win, 1010, "one"), 0, wx.EXPAND)
box2 = wx.BoxSizer(wx.HORIZONTAL)
box2.Add(wx.Button(win, 1010, "two"), 0, wx.EXPAND)
box2.Add(wx.Button(win, 1010, "three"), 0, wx.EXPAND)
box2.Add(wx.Button(win, 1010, "four"), 0, wx.EXPAND)
box2.Add(wx.Button(win, 1010, "five"), 0, wx.EXPAND)

box3 = wx.BoxSizer(wx.VERTICAL)
box3.Add(wx.Button(win, 1010, "six"), 0, wx.EXPAND)
box3.Add(wx.Button(win, 1010, "seven"), 2, wx.EXPAND)
box3.Add(wx.Button(win, 1010, "eight"), 1, wx.EXPAND)
box3.Add(wx.Button(win, 1010, "nine"), 1, wx.EXPAND)

box2.Add(box3, 1, wx.EXPAND)
box.Add(box2, 1, wx.EXPAND)
box.Add(wx.Button(win, 1010, "ten"), 0, wx.EXPAND)

50wxPython: Cross Platform GUI Toolkit

wx.GridSizer

51wxPython: Cross Platform GUI Toolkit

RowColSizer

52wxPython: Cross Platform GUI Toolkit

Drawing

• A wx.DC is a device context onto which graphics and text
can be drawn.

• Represents a number of output devices in a generic way:
– windows

– printers

– bitmaps

– the whole screen

• The same code may be used to draw on different devices.

53wxPython: Cross Platform GUI Toolkit

Drawing

• DC’s have many drawing primitives:
– DrawArc, DrawBitmap, DrawElipse, DrawLine, DrawLines,

DrawPoint, DrawPolygon, DrawRectangle, DrawRoundedRectangle,
DrawSpline, DrawText

• And work with GDI objects:
– wx.Font, wx.Bitmap, wx.Brush, wx.Pen, wx.Mask, wx.Icon, etc.

54wxPython: Cross Platform GUI Toolkit

Code break...

55wxPython: Cross Platform GUI Toolkit

Debugging with PyCrust

• Interactive Python Shell

• 100% Python

• Part of wxPython

• Standalone App

• Embeddable
Components

56wxPython: Cross Platform GUI Toolkit

57wxPython: Cross Platform GUI Toolkit

PyCrust Embeddable Components

• Interactive Shell:
py.shell

• Namespace Viewer:
py.filling

• Integrated Combo:
py.crust

58wxPython: Cross Platform GUI Toolkit

PyCrust Features

• Colorized Python Code

• Attribute/Method Auto-Completion

• Function/Method Calltips

• Multiline Command Editing

• Command History/Recall

59wxPython: Cross Platform GUI Toolkit

PyCrust demo...

60wxPython: Cross Platform GUI Toolkit

Other tools

• wxDesigner

• Boa Constructor

• wxGlade

• WingIDE

• PythonCard

• Chandler

61wxPython: Cross Platform GUI Toolkit

Questions?

62wxPython: Cross Platform GUI Toolkit

Last minute additions

• Slides of this presentation are available at:
http://wxPython.org/OSCON2004/basic/

